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ABSTRACT 

 
This research addresses a general class of infrastructure asset management problems. 
Infrastructure agencies usually face budget uncertainties that will eventually lead to suboptimal 
planning if maintenance decisions are made without taking the uncertainty into consideration. It 
is important for decision makers to adopt maintenance scheduling policies that take future budget 
uncertainty into consideration. The author proposes a multistage, stochastic linear programming 
model to address this problem. The author also develops solution procedures using the 
augmented Lagrangian decomposition algorithm and scenario reduction method. A case study 
exploring the computational characteristics of the proposed methods is conducted and the benefit 
of using the stochastic programming approach is discussed. 
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EXECUTIVE SUMMARY 

 
An efficient transportation infrastructure network is vital to economic and social development. 
Infrastructure maintenance consumes a significant proportion of the surface transportation 
budget, while the costs borne by the road-using public for vehicle operation and depreciation are 
even greater. Facilities must be designed and constructed with budget and other applicable 
constraints. Infrastructure maintenance management is one of the most important components of 
infrastructure management. It is the process of developing alternative maintenance strategies and 
determining the best solution to ensure desired level of service. For many types of infrastructure 
facilities, the service life can be extended beyond the original design life by applying 
maintenance treatments. Maintenance strategies are generally considered a sequence of 
treatments selected from a list of possible treatments generally available for the facility. Life-
cycle cost concepts should be used to determine the difference in costs between various 
strategies. Costs should consider those borne by both user and agency.  
 
Maintenance options of an infrastructure facility consist of various routine, preventive, or 
reactive activities, and other rehabilitation and replacement techniques. Maintenance expenditure 
is one of the costly infrastructure investments. From a mathematical point of view, there are two 
types of maintenance scheduling problems. The first one is network-level problem, where 
decision makers face great challenges of determining which facility is to be repaired, when and 
how repairs should be carried out, and what treatment to use. Another is the project-level 
maintenance problem, in which only the maintenance scheduling of one facility is considered.  
 
There are other uncertainties in the infrastructure management process. For example, 
infrastructure deterioration is a dynamic, complicated, and stochastic process affected by a 
variety of factors such as usage, environmental conditions, and structural capacities, as well as 
certain unobserved factors. Hence, the performance of an infrastructure facility can never be 
predicted with absolute certainty. Ignoring such uncertainties during the modeling process may 
compromise the validity of an optimal solution. It is also important to take those uncertainties 
into consideration when making maintenance resource allocation decisions.  
 
A road network case is studied as part of this research. The following findings indicate that the 
proposed model and solution procedure is able to solve the maintenance scheduling problem 
efficiently and effectively. The benefit of using the stochastic programming approach over a 
deterministic approach is also discussed. Stochastic programming solutions, which take future 
budget uncertainty into consideration, tend to allocate more resource into preventive 
maintenance than deterministic solution that ignores the uncertainty information. The proposed 
methodology can help decision makers effectively obtain optimal maintenance planning under 
budget uncertainty.  
 
The objective of this research is to develop a network-level infrastructure maintenance 
scheduling problem under budget uncertainty. The problem was formulated as a multistage, 
linear stochastic programming model. The proposed model differs from its deterministic 
counterpart in that it attempts to find the optimal maintenance scheduling plan given the 
information that future funding is uncertain. The author also proposes an augmented Lagrangian 
decomposition method and a scenario reduction method to solve the stochastic programming 
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problem. The usefulness and efficiency of the proposed model will be tested in a real road 
network maintenance scheduling problem.  
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CHAPTER 1. INTRODUCTION 

 

1.1 INFRASTRUCTURE ASSET MANAGEMENT 

Infrastructure asset management (IAM) is a systematic approach of maintaining, upgrading, and 
operating infrastructure facilities cost effectively. Examples of infrastructure assets include 
pavements, bridges, drainage culverts and storm drainage systems, traffic signals, traffic signs, 
traffic striping, ITS infrastructure, safety rest areas and roadside. IAM combines engineering 
principles with sound business practices and economic theory, and it provides tools to facilitate a 
more organized, logical approach to decision making. The goal of infrastructure asset 
management is the effective management of large and complex infrastructure systems in an 
integrated manner, by considering the interdependency between all of the facilities within the 
system. As such, infrastructure asset management aims to provide information to decision 
makers about the trade-offs of different alternative solutions. Generally, the management process 
focuses on the stages of a facility’s life cycle specifically maintenance, rehabilitation, and 
replacement. Asset management specifically uses mathematical models and computer software 
to organize and implement with the fundamental goal to preserve and extend the service life of 
long-term infrastructure assets which are vital underlying components in maintaining the quality 
of life in society and efficiency in the economy. In the broadest sense, infrastructure management 
covers all phases of infrastructure planning, design, construction, maintenance and disposal 
(Figure 0-1). 

 

 

Figure 0-1 Life Cycle Phases of Infrastructure Asset Management 

 
All infrastructure facilities deteriorate over time due to different reasons, including material, 
usage and environmental damage. Deterioration of infrastructure systems overtime is inevitable 
because of wear and tear caused by usage and that the materials that make up the facility begin to 
break down and become affected by elements such as rain, sunlight, and chemicals that come 
into contact with the surface. For example, the asphalt binder that is the “glue” of the pavement 
begins to lose its natural resistance to water, allowing moisture to penetrate into and underneath 
the pavement. The truth is, no infrastructure facility is exempt from deterioration no matter how 
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well it is constructed. Material deterioration begins immediately. Even in normal conditions 
substantial deterioration can begin to take place after a certain period of time.  
 
As infrastructure facilities deteriorate, the cost to operate and maintain them increases. Therefore, 
managing maintenance activities for large scale infrastructure systems is a difficult task.  Many 
projects and interests compete for the limited resources allocated to different programs. Many 
factors are involved in the decision making process of infrastructure asset management. The 
basic elements of infrastructure asset management are shown in Figure 0-2. 

 

 

Figure 0-2 Basic Elements of Infrastructure Asset Management 

 
1.1.1 Data Collection 

This element of the management provides the decision makers with information on condition of 
the system for which the decision maker is responsible for managing. The system is usually 
divided into management facilities or segments. The data collected will provide basic 
information about the location and inter-connectivity of each management segment. The 
minimum data required for each management segment generally includes: identification, location, 
size, importance such as functional classification, material type, usage levels and date of 
construction or last major repair.  
 
For example, for a network of pavements, the data need to be collected include distress, rutting, 
roughness, slab faulting, pavement strength, and so on. These indicators will be used in preparing 
the needs analysis/construction program, aid in pavement design and management and highway 
improvement. Also, physical information from highway construction and maintenance projects 
can also be inventoried.  
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1.1.2 Performance Modeling 

Accurate prediction of infrastructure performance is critical to infrastructure asset management 
agencies. Reliable and accurate predictions of infrastructure performance can save significant 
amounts of money for infrastructure management agencies through better planning, maintenance, 
and rehabilitation activities. Infrastructure deterioration is a complicated, dynamic, and 
stochastic process affected by various factors such as design, climate conditions (e.g., rainfall, 
temperature, and amount of sunlight), material, structural capacities, as well as some unobserved 
factors. In general, the deterioration process of an infrastructure facility is a function of various 
factors affecting the mechanistic characteristics of the facility, such as design, climate, materials, 
construction, age, and the degree of maintenance. Deterioration models can be developed by 
using historical data as discussed in previous section. Usually, data points affected by 
maintenance activities are excluded when used in the development of deterioration models, in 
order to obtain the true deterioration process of the facility. 
  

1.1.3 Program Optimization 

After the performance models have been developed, the condition of individual facilities can be 
projected into the future. However, the projected condition may not satisfy the decision makers’ 
requirement. Therefore, maintenance plans need to be adjusted and facilities will be selected for 
maintenance and repair during the planning horizon in order to achieve an established goal. Once 
an agency determines the funding needed to maintain the system in desired condition, the 
identified funding requirements will be compared to the funding available. Life-cycle cost 
analysis is usually adopted to compare different strategies. For an existing facility, the life-cycle 
cost analysis is considered an efficient approach for comparing the long-term impacts of 
different maintenance strategies and identifying the optimal ones. Using the life-cycle cost 
approach allows the decision maker to compare different strategies from the economic 
perspective and determine the most cost-effective one over a certain planning horizon. If 
available funding are less than those identified as needed for any of the years in the analysis 
period, optimization technique or other mechanism can be used to allocate the available funding 
among the management facilities, the goal of which is to provide the greatest overall return in 
system-level performance for the funding expected.  

1.1.4 Feedback 

Feedback refers to the transfer of part of the output to the input. A feedback system ensures 
continual feedback of information for assessing infrastructure system conditions. System 
conditions can be predicted using prediction models, and comparison with the feedback 
condition data provides a measure of predictive capabilities.  It also provides procedures for 
evaluating other aspects of the facility network, including observed life cycle costs and 
performance of maintenance and rehabilitation treatments. Identification of dangerous spots is 
another area where feedback analysis can be extremely useful. A desired Infrastructure 
Management Decision Support Systems should be implemented using projection techniques, 
assignment processes, and costs based on limited information. For a system to become fully 
adopted and used, it must provide reliable projections. The feedback process therefore provides 
information to evaluate how reliable past estimates have been and provides a method to adjust 
future estimates. These feedback processes are necessary for decision makers to operate the 
infrastructure management system, update projection algorithms, assignment processes, and 



  

4 

costs on a repeating basis. In summary, a feedback system provides for measurement and 
evaluation of performance of the system in service. 
 
In the context of a pavement management system, the monitoring information is brought to make 
some comparisons like comparisons of actual costs of maintenance, rehabilitation, and 
reconstruction with those obtained in the pavement management system analysis; evaluations of 
field observations of pavement conditions with those predicted by pavement management system 
models. 
 

1.2 INFRASTRUCTURE ASSET MANAGEMENT MAINTENANCE SCHEDULING PROBLEM 

An efficient transportation infrastructure network is vital to economic and social development. 
Infrastructure maintenance consumes a significant proportion of the surface transportation 
budget, while the costs borne by the road-using public for vehicle operation and depreciation are 
even greater. Facilities must be designed and constructed with budget and other applicable 
constraints. Infrastructure maintenance management is one of the most important components of 
infrastructure management. It is the process of developing alternative maintenance strategies and 
determining the best solution to ensure desired level of service. For many types of infrastructure 
facilities, the service life can be extended beyond the original design life by applying 
maintenance treatments. Maintenance strategies are generally considered a sequence of 
treatments selected from a list of possible treatments generally available for the facility. Life-
cycle cost concepts should be used to determine the difference in costs between various 
strategies. Costs should consider those borne by both user and agency.  
 
Maintenance options of an infrastructure facility consist of various routine, preventive, or 
reactive activities, and other rehabilitation and replacement techniques. Maintenance expenditure 
is one of the costly infrastructure investments. From a mathematical point of view, there are two 
types of maintenance scheduling problems. The first one is network-level problem, where 
decision makers face great challenges of determining which facility is to be repaired, when and 
how repairs should be carried out, and what treatment to use. Another is the project-level 
maintenance problem, in which only the maintenance scheduling of one facility is considered.  
 

1.2.1 Project Level Problem 

Project level problem is the foundation of network-level problem. Project level problem is to 
determine the best strategy possible for a single facility within imposed constraints including 
available funds. The primary results of project-level management include an assessment of the 
cause of deterioration, identification of possible strategies, and selection of the "best" strategy 
given the constraints present. A typical project level maintenance scheduling problem is 
illustrated in Figure 0-3.  As showing in the figure, there are two maintenance scheduling 
solutions (blue and red).  It requires a life-cycle cost analysis before the decision makers can 
make a choice between them. 
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Figure 0-3 Project-Level Maintenance Scheduling Problem 

 

1.2.2 Network Level Problem 

Network Level problems deal with systems of multiple facilities. The model of network level 
problem is usually a combination of models of many project level problems. Therefore, network 
level problems are more complex and more difficult to solve than project level problems. In 
network-level maintenance scheduling problem, decision makers usually have to consider large-
scale systems of facilities under their jurisdiction. The purpose of the network-level maintenance 
scheduling problem is normally to identify the fund needs and determine location and timing of 
maintenance treatments for the whole system.  
 

1.3 MOTIVATION OF THIS RESEARCH 

The U.S. population is expected to grow by 100 million and the number of miles traveled on the 
nation's highway will double during the next 30 years. However, the current investment levels 
are not keeping pace with the increased usage and deterioration of the highway network. Nearly 
161,750 miles of federal-aid highways have pavement rated unacceptable and 153,990 bridges 
nationwide are structurally deficient or functionally obsolete, according to U.S. Department of 
Transportation (U.S. DOT) data.  
This situation is not going to change in the next ten years unless steps are taken to improve how 
available funds are used and to increase the amount of funds to meet system needs. According to 
data from the 2006 U.S. DOT “Condition & Performance” report, the federal share of highway 
investment needed just to maintain highway conditions and performance will be $55 billion in 
FY 2010 and will grow to almost $62 billion by FY 2015. For those same years, the U.S. 
Treasury estimates that revenues into the Highway Account will start at $37 billion and grow to 
just under $42 billion. The gap between projected revenues and minimum investment needs 
average $19 billion per year. Under this situation, how to effectively use the limited funding on 
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transportation infrastructure is a cutting-edge problem. A recent study conducted by Texas 
Department of Transportation shows that as a result of use and age, Texas’ highway 
infrastructure is showing signs of deterioration. According to Federal Highway Administration 
data, passenger vehicle traffic in the United States is expected to increase by more than 30 
percent by 2020, with large truck traffic estimated to increase by almost 40 percent. As indicated 
by the Texas Department of Transportation, a fully loaded tractortrailer truck damages the 
highway almost 10,000 times more than a passenger vehicle. Vehicle roadway damage affects 
smoothness of ride and causes ruts, potholes and cracks in the roadway.  Driving on roads that 
are in disrepair accelerates vehicle deterioration, drives up roadway maintenance costs and 
increases fuel consumption. The total revenue available in Texas for pavement and bridge 
maintenance plus additional capacity is expected to be $100 billion from 2011 to 2035. The 
estimated funding gaps will range from $74 billion to $170 billion from 2011 to 2035 (Texas 
2030 Committee, 2011).  
 
A number of mathematical models have been developed for infrastructure system maintenance 
planning. Most of the approaches treat the annual budget as a fixed amount. An underlying 
assumption is that actual funds to support the maintenance activities would never deviate from 
the original expectation. However, this assumption is often unrealistic because the funding 
allocated to infrastructure maintenance program is subject to uncertainty due to various financial 
and political risks. Moreover, the funding for maintenance usually has to compete with other 
activities, e.g., capacity expansion projects. Consequently, the actual amount of money 
distributed to the maintenance activities may deviate from the original estimate. Therefore, if the 
funding falls short for some of the years during the planning period, part of the planned 
maintenance activities might be forced to be postponed, leading to inevitable condition deviation 
from the expectation. As a result, ignoring the random characteristics of future budget may limit 
the usefulness of the optimal scheduling solution. It is therefore without doubt that the 
assumption of deterministic budget is questionable in practice.  
 

1.4 OBJECTIVE  

The objective of this research is to develop a network-level infrastructure maintenance 
scheduling problem under budget uncertainty. The problem was formulated as a multistage, 
linear stochastic programming model. The proposed model differs from its deterministic 
counterpart in that it attempts to find the optimal maintenance scheduling plan given the 
information that future funding is uncertain. The author also proposes an augmented Lagrangian 
decomposition method and a scenario reduction method to solve the stochastic programming 
problem. The usefulness and efficiency of the proposed model will be tested in a real road 
network maintenance scheduling problem.  
 

1.5 REPORT ORGANIZATION 

The organization of this report is as follows: Chapter 1: Introduction. Chapter 2 focuses on 
reviewing the literature of infrastructure maintenance planning models and performance models. 
In this chapter, previous works are classified into different categories based on the nature of 
these models. For each category, the advantages and disadvantages are discussed and 
summarized. Chapter 3 describes the methodologies of formulating the infrastructure 
maintenance planning problem in both deterministic and stochastic settings. Chapter 4 discusses 
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the solution methods used in this research to solve the multi-stage stochastic programming 
problem.  Chapter 5 presents the application of the model and algorithm developed in Chapter 3 
and 4 to the PMIS data set. The optimal solution results are discussed.  Chapter 6 summarizes the 
research effort and presents the conclusions.  
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CHAPTER 2.  LITERATURE REVIEW OF INFRASTRUCTURE PERFORMANCE 
MODELS AND MAINTENANCE SCHEDULING MODELS 

 

2.1 PERFORMANCE MODELS 

In infrastructure asset management, performance models are used to predict future conditions 
and to help schedule maintenance activities. The effectiveness of maintenance planning in 
infrastructure management depends on the accuracy of the predicted future condition of 
infrastructure facilities. If the performance models used in determining the maintenance policies 
cannot effectively represent the actual deterioration process, the planned maintenance activities 
might not yield the expected results, which leads to suboptimal use of resources.  
 
In general, the deterioration process of an infrastructure facility is a function of various factors 
affecting the mechanistic characteristics of the facility, such as design, environment, materials, 
construction, age, and the degree of maintenance. The deterioration process also involves load 
and load application sequence, and other factors that cause system responses such as stress, strain 
and deflections.  
 
Performance models can be classified into two types: deterministic or probabilistic. In 
deterministic models, the future condition of a facility is predicted as an exact value based the 
past information collected about the facility. In probabilistic models, the performance of a 
facility is predicted by estimating the probability with which the facility would change to a 
particular condition state, from a predefined set of possible facility conditions of the random 
process. Probabilistic models are usually associated with discretization of the condition states. 
Moreover, probabilistic models can also be used to describe the deterioration of the whole 
system.  
 
Most of the performance models developed in the early stages of infrastructure management 
research are deterministic (see AASHO (1962), Garcia and Riggins (1984), Paterson (1987), for 
example). Such models are unable to effectively take into consideration the stochastic nature of 
infrastructure deterioration. Infrastructure deterioration is a complex process that is associated 
with uncertainties. The uncertainties of infrastructure deterioration come from three sources. The 
first source concerns measurement errors, which can cause a high degree of prediction 
uncertainty (Humplick, 1992). The second source of uncertainty is the inherent randomness of 
the facility deterioration processes. The third source is the inability to model the true 
deterioration process, because the facility performance is also affected by other latent factors 
(e.g., construction quality), which are difficult to observe and quantify individually. Therefore, 
probabilistic models are developed to help take uncertainty into consideration when modeling 
infrastructure deterioration.  
 
A popular example of probabilistic performance models is the one based on the Markov Chain, 
in which the deterioration process is characterized by transition between different condition 
states. Markov Chain can be used in modeling both single facility (e.g., pavement, bridge) and 
systems (e.g., pavement network). For example, Golabi et al. (1982) proved the effectiveness of 
using the Markov Chain method by developing Markov Chain performance models in Arizona. 
The core of the Markov Chain models is the development of the transition probabilities. A 
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number of methods including the expected-value method by Butt et al. (1987) and Jiang et al. 
(1989) and the proportion method by Wang et al. (1994) have been employed to develop the 
transition probabilities. Another way of developing the transition probabilities is the simulation 
approach of utilizing the design equations (Gao et al. 2007). Other similar models were 
developed to consider the impact of some relevant factors. For example, Madanat et al. (1995) 
used the ordered probit technique to link transition probabilities to relevant explanatory variables. 
Madanat et al. (1997) further extend the probit model to account for the heterogeneity in the 
dataset. These models predict the facility conditions at fixed time points. 
 
Another type of probabilistic performance model is the reliability model (or survival model). For 
example, Mishalani and Madanat (2002) developed a probabilistic model to determine the 
probability distribution of the time it takes an infrastructure facility to leave a condition state 
once entered. Mauch and Madanat (2001) conducted a similar study by developing the duration 
model from a semiparametric approach. Prozzi and Madanat (2000) developed a duration model 
to predict the number of axle load repetitions needed to reduce serviceability below an 
acceptable level. Zhang and Damnjanovic (2006) developed a model to predict the reliability of 
the pavement by using design equations. The limitation of reliability model is that the condition 
of an infrastructure facility (e.g., a pavement section) is usually characterized by multiple 
condition states. As a result, using only two states (survival and failure) cannot fully characterize 
the changing of the facility condition. The reliability-based model is more suitable for modeling 
a specific distress failure mode, in which the development of the distress cannot be easily 
observed until it reaches a certain level (see Wang et al. (2005), for example). It can also be used 
in such scenarios that the failure of a facility (e.g., a bridge) has significant consequence. In such 
case, decision makers can better understand the risk by using reliability models.  
 
In the rest of this section, major existing performance models in the literature are discussed.   
 

2.1.1 Markov Chain Model 

The Markov Chain model used in infrastructure deterioration modeling is a stochastic process 
and is characterized by the following features. First of all, the Markov process is discrete in time. 
Second, the Markov process has a countable state space. Finally, the Markov process satisfies the 
Markovian property. The Markovian property is said to be satisfied if the future state of the 
process depends on its present state, but not on its past states. Therefore, for the prediction of 
infrastructure deterioration, this property is satisfied if the future condition of the facility is 
dependent on its present condition and not on its past condition. The Markov Chain model can be 
used for both project-level and network-level performance modeling (Gao et al. 2007). For 
project level problems, the condition probability represents the probability of the facility being in 
a specific state. For network level problems, the condition probability represents the proportion 
of network being in a specific state. The reason why Markov Chain model can be used in the 
determination of infrastructure facility deterioration is as follows. In general, infrastructure 
deterioration is a continuous process. However, the inspection of the condition is usually carried 
out at specific points in time, e.g., annually. The state space, that is the number of possible 
outcomes of the condition indicator, is infinite. However, especially at the management level, the 
state space is usually defined as a finite number of discrete condition states.  
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2.1.2 Reliability Model (or Survival Model) 

Survival analysis is a branch of statistics which deals with the counting of deaths and failures. 
More generally, survival analysis involves the modeling of time to event. Death or failure is 
considered an "event" in the survival analysis literature. Survival analysis attempts to answer 
questions of what is the probability of a subject surviving past a certain time; and what are the 
effects that affect the failure. The primary goal in using survival models to analyze infrastructure 
condition data is to assess the dependence of time-to-failure on external variables. One way to 
explore the relationship of covariates on time-to-failure is by means of a regression model in 
which failure time has a probability distribution that depends on the covariates.  
 
The specific feature that distinguishes survival analysis from classical statistical analysis is data 
censoring. Usually, the failure time is unknown for some of the facilities. The only information 
available is that the facility has survived up to a certain time. Therefore, the facility is no longer 
followed up. This type of censoring is called right censoring. For right-censored data, the actual 
information of the ith facility 1,...,i n=  is contained in the pair ( ),i it d , where it  is the failure 

time and id  is the censoring indicator, taking the value one if the event has been observed 

(failed), otherwise id  takes value zero (censored). Then the censoring indicator can be expressed 

in Eq.(2.4). 
 

1  if 

0  if 
i i

i
i i

t c
d

t c

≤
=  >

 (2.4) 

 
where, ic  is the censoring time.  

 
For a random time-to-failure, ܶ, the probability density function of ܶ is defined as ( )f t  and the 

cumulative distribution function as ( ) ( )F t P T t= ≤ . Two other functions that are useful in this 

context are the survival function ( ) ( ) ( )1S t P T t F t= > = − , and the hazard function 

( ) ( ) ( )/h t f t S t= , which can be interpreted as the instantaneous rate of failure given survival up 

until time t.  
 
 
 
One of the survival models that have been used in infrastructure performance modeling is the 
Proportional Hazard (PH) model (Gao et al. 2011). In general, a PH model with covariates can 
be written as: 

( ) ( ) ( )'
0 expi i ih t h t= x β  (2.5) 

 
where ( )0h t  is the baseline hazard function representing the deterioration rate of the facility; β  

is the parameter vector and ix  is the covariates vector of the ݅th observation. A typical survival 

curve of an infrastructure facility is shown in Figure 0-2. 
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Figure 0-2 Survival Curve of an Infrastructure Facility 

 

2.1.3 Discrete Choice Model 

Another probabilistic model, discrete choice model, has also been used in the infrastructure 
performance modeling (see Zhang and Gao (2010), for example). Discrete choice problems 
involve choices between two or more discrete alternatives, such as staying or not staying in the 
good condition state. Discrete Choice Modeling is a powerful analytic technique for 
understanding the choice between alternatives. The modeling technique reveals the relationship 
between the probability of choosing an alternative and the attributes or benefits that characterize 
that alternative.  More specifically, the discrete choice model is a mathematical representation of 
the preferences that provides estimates of the utility or value that the subject places on different 
features or benefits when making constrained choices. Discrete choice model is similar to 
reliability model, but different in the number of condition states. Instead of only defining two 
condition states, discrete choice model allows the existence of multiple condition states. 
Therefore, it can better capture the deterioration process than reliability models.  
 
One of the discrete choice model applications in infrastructure performance modeling can be 
explained as follows. Let ܥ௡ as the dependent variable represent the condition state for facility ݊ 
and an underlying response variable ܷ௡ be a measure of the latent deterioration propensity for 
facility ݊. ܷ௡ is assumed as a continuous variable varying from −∞ to +∞. The observed facility 
condition state ݇ is a reflection of the latent variable ܷ௡, which is specified to be a summation of 
a deterministic function of explanatory variables. In this case, the structure of the model can be 
described as: ܷ௡ = ௡ܺ′ߚ + ௡ߝ (݊ = 1,2, . , , , ܰ) (2.6) 
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where ܷ௡ is the underlying response variable; ܺ௡ is a set of explanatory variables; ߚ is the 
estimated parameter; and ߝ௡ is the error term.  The above equation cannot be directly estimated, 
since ܷ௡ is not observable. But the observable state ݇ that facility ݊ falls in can be used to 
estimate the parameters in the model. As such, ܥ௡ is governed by Ψ௞, the threshold values of the 
underlying response variable ܷ௡. If the latent variable falls between the threshold Φ௞ and Φ௞ିଵ, 
then the ܥ௡ falls into the corresponding state ݇. In this regard, the thresholds separate the 
continuous underlying response variable ܷ௡ into different states. If ߝ௡ is assumed to follow a 
standard normal distribution with mean 0 and standard deviation 1. Then the probability for 
facility ݊ to be in the condition state ݇ can be obtained by ܲ(ܥ௡௞ = 1) = Φ(Ψ௞ − (௡ܺ′ߚ − Φ(Ψ௞ିଵ − (௡ܺ′ߚ (2.7) 
 

2.1.4 Deterministic Models 

Deterministic models are usually used for single facility performance modeling. Deterministic 
performance models can usually be expressed in a general form (2.8). Let ( )nyy ,...,1=y  be a 

1×n  vector of sample of n  condition observations expressed as: 
( ),i i iy h ε= +x β  (2.8) 

 
where h  is the deterioration function. ix  is a 1 p×  vector of p  explanatory variables and β  a 

1p×  vector of the corresponding coefficients. The error term iε  is assumed to follow a certain 

distribution with associated coefficients θ . A data point affected by maintenance intervention 
can be modeled as: 

( ),i i i i iy h A εδ= + +x β  (2.9) 

 
where iδ  is an independent Bernoulli trial with success probability τ  representing the existence 

of the maintenance intervention. iA  represents maintenance effectiveness and is assumed to 

follow a probability distribution g with parameters κ . Based on (2.9), the deterioration rate is 
captured by estimating the parameter β . Moreover, by estimating the parameters iδ  and iA , the 

model determines if the thi  observation is affected by maintenance treatment and if so, the 
magnitude of the impact. Details of the model can be found in Gao et al. (2011) and Hong and 
Prozzi (2010).  
 

2.2 MAINTENANCE SCHEDULING MODELS 

Maintenance scheduling models include the mathematical models focused on finding either the 
optimal balance between costs and benefits of maintenance or the most appropriate time to 
execute maintenance. Parameters often considered in this optimization are the cost of failure, the 
cost per time unit of downtime, the cost (per time unit) of corrective and preventive maintenance 
and the cost of repairable system replacement. The foundation of any maintenance scheduling 
model relies on the underlying deterioration process and failure behavior of the facility. 
Maintenance scheduling optimization is one of the most critical issues in infrastructure asset 
management since the failure of a system during actual operation can be a costly and dangerous 
event. When a facility fails to operate in a system, it does not only cause damage to the system 
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but also affect all the users. This optimization process can utilize different methods. It can be 
made by adding features and conditions that make the maintenance policy more realistic.  
 
Numerous efforts have been made to develop mathematical models as maintenance strategy 
decision-making aids. The infrastructure maintenance management problem can generally be 
formulated in both discrete-time and continuous-time settings. In discrete-time setting models, a 
set of time points at which the maintenance treatment might be applied is predefined, for 
example, at the beginning or end of each year. The solution of this type of model determines 
which maintenance treatment should be applied at specific time points. In practice, infrastructure 
agencies make maintenance decisions subject to budgetary constraints and resource availability. 
Agencies allocate resources for maintenance activities at the beginning of each budgeting year. It 
is therefore realistic to discretize the planning horizon into predetermined temporal stages (e.g., 
years) and restrict treatments to occur only at such time points. In continuous-time setting 
models, however, there is no predefined constraint about the timing of the maintenance treatment. 
The solution of this type of model determines both timing and type of maintenance treatments.  
 
In the rest of this section, some popular maintenance scheduling models are discussed.   
  

2.2.1 Ranking Method 

A simple ranking procedure can be used for network-level maintenance scheduling. It generally 
ranks those in the worst condition as the highest priority without regard to the return on the funds 
expended. If the goal is to provide the best service for the available funds, then some type of 
measure of cost-effectiveness should be included in the selection process. The advantage of this 
method is its easy-to-use feature. However, the resulting funding allocation is not optimal. Better 
allocation scheme can be found by using other methods.  
 

2.2.2 Markov Chain Based Linear Programming (LP) 

The Markov Chain based linear programming model is a discrete-time setting model. It is 
usually used for network-level infrastructure maintenance scheduling problem. In the LP model, 
facilities with similar deterioration patterns are grouped together. The solution of this model 
determines the percentage of a group’s maintenance strategy instead of the strategy for each 
facility. Therefore, the computational effort of this model type is simpler than the Integer 
Programming models (see 2.2.3) (Smilowitz and Madanat 2000; Guignier and Madanat 1999; 
Robelin and Madanat 2006; Wu et al. 2009; Gao et al. 2010). However, since the solution only 
determines the portion of the system that will receive a certain maintenance treatment, it requires 
additional effort to determine the specific facilities. For example, if the solution indicates that 20% 
of a road network should receive preventive maintenance treatments, it needs some mechanism 
to determine which pavement section should be in that 20%. Nevertheless, different ways of 
determining that 20% will not change the objective function value in the LP model.       
 
The mathematical expression of the LP model can be explained as follows. Consider an 
infrastructure system as a set ࣭ = {1,2, … , ܵ} of different groups of facilities with homogeneous 
properties, e.g., by highway functional class. ℐ = {1,2, … ,  is defined as a set of state space {ܫ
with elements representing the facility condition state. Each element of this set represents a 
specific condition state. In each time period, a decision should be made to determine the 
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proportion of system that should receive maintenance treatment and the type of treatment that 
should be applied. A set of basic maintenance treatments is defined as ℳ = {1,2, … ,  where ,{ܯ
the ܯth treatment is set to be most effective and also expensive. The scheduling time horizon is 
represented by the discrete set of time periods ࣮ = {1,2, … , ܶ}. During each time period, the 
conditions of facilities deteriorate because of usage, aging, and environment. The deterioration 
process of a pavement can be expressed by the change of the elements of the condition state 
probability vectors. More details of the Markov Chain based linear programming model will be 
discussed in Chapter 3.  
 
Linear programming can be efficiently solved by the simplex algorithm, which solves Linear 
Programming problems by constructing a feasible solution at a vertex of the polytope and then 
walking along a path on the edges of the polytope to vertices with non-decreasing values of the 
objective function until an optimum is reached. In general, the simplex algorithm is very efficient 
and can be guaranteed to find the global optimum if certain precautions against cycling are taken. 
Multiple optimal solution is also possible in Linear programming problems. 

 

2.2.3 Integer Programming (IP) 

The IP model is another discrete-time setting approach to solve multiple facilities and budget 
constraint problem. The advantage of IP over LP is that its solution will assign maintenance 
treatment directly to individual facilities. However, it is usually used on small size of systems 
because the computational burden of combinatorics. Wang et al. (2003) developed a multi-
objective IP model for network-level pavement maintenance management. In this paper, the 
authors use the branch and bound algorithm to solve the proposed model. Ouyang and Madanat 
(2004) also developed an IP model outlining the scheduling of rehabilitation activities for 
multiple pavement facilities. They proposed a greedy heuristic to solve the problem. However, 
due to the combinatory nature of the IP approach, the computational burden of network-level 
maintenance management problems increases exponentially as the number of facilities under 
consideration increases. Therefore, some researchers tend to use approximation techniques when 
dealing with large-scale facility maintenance scheduling. For example, Gao and Zhang (2008) 
use the approximate dynamic programming method to solve network-level pavement 
management problem. Karabakal et al. (1994) and Dahl et al. (2008) use Lagrangian relaxation 
techniques to decompose the network-level IP problem into simpler project-level dynamic 
programming problems.  
 
The mathematical formulation of the IP approach can be explained as follows. Let ࣮ ={1,2, … , ܶ} represent the set of planning horizon. ࣛ is defined as a set with ܰ elements 
representing facilities in the system. A set of basic maintenance treatments is defined as ℳ ={1,2, … ,  th treatment is set to be the most effective and expensive. Given theܯ where the ,{ܯ
initial condition of facility ܽ, ݏ௔଴, and the deterioration function ݂(∙), the IP formulation is: max ෍ ෍ ࣮∋௔௧௔∈ࣛ௧ݏ  (2.10) 

s. t.  ෍ ෍ ܿ௔௠௧ݑ௔௠௧௠∈ℳ௔∈ࣛ ≤ ,௧ܤ ݐ∀ ∈ (2.11) 
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௔௧ݏ = (௔௧ିଵݏ)݂ + ෍ ௔௠௧݁௠௠∈ℳݑ , ∀ܽ ∈ ࣛ, ݐ ∈ ࣮ (2.12) 

෍ ௔௧௠௠∈ℳݑ ≤ 1, ∀ܽ ∈ ࣛ, ݐ ∈ ௔௧௠ݑ (2.13) ࣮ ∈ {0,1}, ∀ܽ ∈ ࣛ, ݐ ∈ ࣮, ݉ ∈ ℳ ௔௧ݏ (2.14) > 0, ∀ܽ ∈ ࣛ, ݐ ∈ ࣮ (2.15) 
 
where, ܿ௔௠௧ = maintenance cost of applying the ݉th treatment to facility ܽ at year ܤ ;ݐ௧ = budget at year t; ݑ௔௠௧ = binary variable, equals to 1 if the ݉th treatment is applied to facility ܽ and equals to 0 
otherwise; ݏ௔௧ = condition of facility ܽ at year t; ݂(∙) = deterioration function;  ݁௠ = maintenance effectiveness of the ݉th treatment.  
 
The objective function (2.10) is to maximize the sum of every year’s condition of all facilities. 
Constraint (2.11) states that the annual expenditure cannot exceed the available budget. 
Constraint (2.12) represents the deterioration process of the infrastructure facility. Constraint 
(2.13) states that only one treatment can be applied to the same facility each year. Constraints 
(2.14) and (2.15) define the decision variables of the IP model.  
 
Methods of solving MIP problems can be largely classified into the following categories: 

1. Branch and Bound method. It is the most widely used method for solving MIP problems. 
Subproblems are created by adding constraints to the integer variables. For example, if 
the ݇th integer variable ݔ௞’s current solution is ݑ, which is not an integer. Then the 
original problem is divided into two problems with respect to ݔ௞, with ݔ௞ ≤ ௞ݔ and ۂݑہ ≥  respectively. Lower bounds are obtained by the linear-programming relaxation ۀݑڿ
to the problem. It is implemented by keeping the objective function and all constraints, 
but relaxing the integrality constraints. If the optimal solution to a relaxed problem is 
integral, it is an optimal solution to the subproblem, and the value can be used to 
terminate searches of subproblems whose lower bound is higher.  
 

2. Branch and Cut method. Brach-and-cut methods are exact algorithms for integer 
programming problems. It solves the integer programming problem by using a 
combination of cutting plane method with a branch-and-bound algorithm. It works by 
solving a sequence of linear programming relaxations of the integer programming 
problem. Cutting plane methods improve the relaxation of the problem to more closely 
approximate the integer programming problem, and the branch-and-bound algorithms 
proceed by a sophisticated divide and conquer approach to solve problems. Branch-and-
cut algorithm: 
 
Step 1. Initialization: Denote the original integer programming problem (2.1)-(2.8) as the 

root node and store it in the waiting node list ݐݏ݅ܮ. Set the upper bound to be ܷܤ ≔
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+∞ {best found}, the lower bound to be ܤܮ ≔ −∞ {Best Possible} and current best 
solution ܠ∗: = ∅. Go to step 2.  

Step 2. Termination: If ݐݏ݅ܮ = ∅, then the current best solution ݔ∗ which yielded the 
objective value ݆ܾ݋ is optimal; if ܠ∗ = ∅, then the original problem is infeasible. If ݐݏ݅ܮ ≠ ∅, go to step 3.  

Step 3. Node selection: Select and delete a node from ݐݏ݅ܮ. Go to step 4.  
Step 4. Relaxation: Solve the linear programming relaxation of the selected node 

problem. If the relaxation is infeasible, node is deleted. If an optimal integer solution ܠ௥ is found and ݆ܾ݋ < :ܤܷ set ,ܤܷ = ∗ܠ ,݆ܾ݋ ≔ ௝ܤܮ with ݐݏ݅ܮ ௥, remove nodes ݆ fromܠ > ݆ܾ݋ ௥ is found andܠ and go to step 2. If an optimal integer solution ܤܷ ≥  ,ܤܷ
remove nodes ݆ from ݐݏ݅ܮ with ܤܮ௃ >  ௥ܠ and go to step 2. If the optimal solution ܤܷ
is not integer, go to step 5.  

Step 5. Add cutting planes: search for cutting planes that are violated by ܠ௥; if any are 
found, add them to the relaxation and go to step 4. If no cutting planes are found, go 
to step 6. 

Step 6. Branching: find variable ݔ௞ of solution ܠ௥ with fractional value ݒ. Create node ݆௡௘௪ with bound ݔ௞ ≤ ௝೙೐ೢܤܮ and set ۂݒہ ≔  Create .ݐݏ݅ܮ Store node ݆௡௘௪ in .݆ܾ݋
node ݆௡௘௪ with bound ݔ௞ ≥ ௝೙೐ೢܤܮ and set ۀݒڿ ≔  Go to .ݐݏ݅ܮ Store node ݆௡௘௪ in .݆ܾ݋
step 2.  

 

3. Branch and Price method. This is essentially branch and bound combined with column 
generation. This method is used to solve integer programs where there are too many 
variables to represent the problem explicitly. Thus only the active set of variables is 
maintained and columns are generated as needed during the solution of the linear 
program.  

 

2.2.4 Reliability Model 

Reliability model is one of the continuous-time setting models. It is usually used to model 
maintenance plan for infrastructure facility whose failure has significant consequence (e.g., 
bridge, traffic lights). An infrastructure facility operates with excellent efficiency when it is new, 
but as it ages its performance deteriorates. According to the model types, for single facility, 
reliability models can be classified into several subcategories. These may include age 
replacement models, minimal repair models, and inspection/maintenance models, Age 
replacement models deal with optimal replacement policies, which are based on age dependent 
operating costs. Minimal repair models focus on repairing a failed unit rather than from replacing 
it. They usually combine a periodic replacement policy with a minimal repair activity upon a unit 
failure. Finally, inspection/maintenance models are concerned with maintenance policies in 
which the current state of a system is not known but is available through an inspection. For 
multi-facility systems, reliability maintenance models concerns with optimal maintenance 
policies for a system consisting of several units of facilities, which may or may not depend on 
each other. Multi-facility reliability maintenance models can be divided into block or group 
maintenance models, inventory models and opportunistic models.   
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One example of reliability model is when the decision makers wish to minimize an optimal 
replacement policy that will minimize the sum of operating and replacement costs per unit time. 
The replacement policy is to perform replacements at intervals of length ݐ௥. The objective is to 
determine the optimal interval between replacements to minimize the total cost of operation and 
replacement per unit time. The total cost per unit time, for replacement at time ݐ௥, can be 
expressed as 

(௥ݐ)ܥ  = (ݐ)ܿ + ௥ܥ = ଵ௧ೝ ቂ׬ ௧ೝ଴ݐ݀(ݐ)ܿ +  ௥ቃ (2.16)ܥ

 
where, ܿ(ݐ) = operating cost per unit time at time ݐ after replacement; ܥ௥ = cost of a replacement. 
 

2.2.5 Optimal Control Model 

The optimal control model is another continuous-time setting approach to model project level 
maintenance scheduling problems. Optimal control deals with the problem of finding a control 
law for a given system such that a certain optimality criterion is achieved. A control problem 
includes a cost functional that is a function of state and control variables. An optimal control is a 
set of differential equations describing the paths of the control variables that minimize the cost 
functional. The optimal control can be derived using Pontryagin's maximum principle or by 
solving the Hamilton-Jacobi-Bellman equation. 
 
The advantage of optimal control models is that maintenance actions are not restricted at fixed 
time points; the model calculates or determines the optimal maintenance time. However, unlike 
ordinary optimal control problems, the control actions (maintenance treatments) for 
infrastructure maintenance management are impulsive, leading to sudden jumps in the facility’s 
condition. Therefore, special techniques are required to solve the problem. Previous researchers 
have adopted different approaches to address this issue. For example, Tsunokawa and Schofer 
(1994) developed an approximate method for road maintenance scheduling problems. In their 
paper, the impulse control problem is simplified by approximating discrete controls using 
ordinary continuous controls. The simplified problem can then be solved effectively using the 
Pontryagin’s maximum principle. In another paper, Li and Madanat (2002) solved the same 
problem given the assumption that the planning horizon is infinite and the condition of the 
facility will enter a steady state after the first maintenance treatment. In this assumption, the 
optimal resurfacing strategy is to define a minimum serviceability level. When the facility 
condition deteriorates to that level, the strategy is employed to bring the condition back the best 
condition limit. In this manner, the authors obtained an optimal solution for the problem under 
steady state. Ouyang and Madanat (2006) derived an exact analytical solution for the same 
resurfacing problem with a finite planning horizon. Through variational derivation, the author 
obtained the necessary condition of the control problem.   
 
As described by Tsunokawa and Schofer (1994), the condition of an infrastructure facility (e.g., 
International Roughness Index), denoted by ݏ, usually follows a special trajectory curve over 
time as the facility deteriorates and receives maintenance treatments shown in Figure 0-3.    
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Figure 0-3 Infrastructure Condition Trend Trajectory 

 
The deterioration rate of the facility is assumed to be a function, f , of the current condition 
level and expressed as follows: 

( ) ( )( )s t f s t=  (2.17) 
 
The amount of condition improvement after a maintenance treatment is assumed to be a function, 
g , of the maintenance intensity (e.g., thickness of overlay), w , and the condition level 
immediately before the treatment, written as: 

( ) ( )( ),s t g s t wΔ =  (2.18) 

 
The initial condition is expressed as: 

( ) 00s s=  (2.19) 

 
Costs for the agency and user are assumed to be functions of the condition and the maintenance 
intensity, respectively, and are written as ( )C s  and ( )M w . Using these functions, the total life-

cycle costs for the agency and user of an infrastructure facility can be written as follows: 

( )( ) ( )( )
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In this formula, T  is the planning horizon, i represents the ith maintenance action, and N  is the 
number of maintenance actions during the horizon. The problem of finding the optimal 
maintenance strategy for a given infrastructure facility can be defined as ascertaining the optimal 
values of it  and ( )iw t , which minimize the life cycle cost, while the condition trajectory, ( )s t , 

is determined by the Eqs. (2.17) and (2.18) and the initial condition (2.19). Therefore, the 
problem introduced above can be solved as an impulse control problem. The control problems 
described above arise frequently in applications. There are two basic approaches to their solution. 
One results in unconventional quasi-variational inequalities and uses the dynamic programming 
methodology. The other approach, similar to the classical calculus of variations, formulates the 
optimality necessary conditions in terms of maximum principle.   
 

2.3 INFRASTRUCTURE MAINTENANCE SCHEDULING MODELS CONSIDERING BUDGET 

UNCERTAINTY 

The aforementioned models treat the annual budget as a fixed amount. An underlying 
assumption is that the actual funds to support maintenance activities never deviate from the 
original expectation. Under this assumption, the planning problem can be solved optimally using 
the optimization model mentioned previously. However, this assumption is often unrealistic, 
because the funding allocated to address infrastructure maintenance problems is usually subject 
to uncertainty due to various financial and political risks. Consequently, the actual amount of 
money distributed to maintenance activities may deviate from the original estimate. If funding 
falls short for some years during the planning period, some of the planned maintenance activities 
may be suspended, leading to inevitable condition fluctuation from the expectation. Therefore, 
ignoring the random characteristics of the future budget may limit the usefulness of the optimal 
planning solution.  
 
In recent years, several researchers addressed the problems of budget uncertainty in the 
infrastructure management area. For example, Li and Puyan (2006) formulated a highway project 
selection problem under budget uncertainty as a multi-choice multidimensional Knapsack 
problem with multi-stage budget recourses. In their paper, the objective is to select a subset of 
candidate projects to achieve maximized system benefits under budget and other constraints. Gao 
and Zhang (2008) investigated the uncertainties in the pavement deterioration process and 
proposed a robust optimization approach for project-level maintenance planning problem. Using 
this approach, the decision maker is able to control the probability of achieving a certain level of 
condition requirement by adjusting the amount of money invested. Wu and Flintsch (2009) 
proposed a chance-constrained programming model with the ability to control the probability of 
going over budget for network-level facility maintenance planning problems. The solution of the 
proposed model is obtained by first choosing a conservative value for the budget and then 
treating the budget as fixed. However, the obtained scheduling solution of this model is only 
optimal at a given probability.  
 
In this research, the network-level infrastructure maintenance scheduling problem under budget 
uncertainty is formulated as a multi-stage, linear stochastic programming model. Stochastic 
programming is a framework for modeling optimization problems that involve uncertainty. The 
goal of stochastic programming is to find a solution which is feasible for all data scenarios and 
optimal in some sense. Stochastic programming models take advantage of the fact that 
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probability distributions governing the data are known or can be estimated. The proposed 
stochastic programming approach differs from its deterministic counterpart in that it attempt to 
achieve the best expected objective value over all possible realizations of the random parameters.  
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CHAPTER 3. PROBLEM FORMULATION 

 
The mathematical formulation of the model developed in this research is presented in this 
section. The performance model is first discussed. Then the deterministic version of the 
infrastructure maintenance planning problem is presented. Finally, the author introduces the 
stochastic extension of the formulation by considering budget uncertainty.  
 

3.1 NOTATIONS 

Table 3.1 Notation 

Sets 

S  set of facility groups and { }1, 2,..., S=S  

I  
set of facility condition states and { }1, 2,..., I=I  with I  represents the worst 

condition state 

M 
set of maintenance treatments and { }1, 2,..., M=M  with the M th treatment 

being the most effective and expensive 

T  set of planning periods { }1, 2,...,T=T  

K  

set of all nodes in the scenario tree and { }1,..., K=K , where 1k =  
corresponds to the root node at 1=t  and ( )t k  denotes the year 

corresponding to node k  

N  
 

set of scenarios and { }1, 2,..., N=N   

 
Parameters 

tB   available budget at time period t 

tB  random variable representing available budget at time period t 

.n
tB  realization of the budget random variable tB  in scenario n  

tb  number of realizations of tB  

smtC  unit cost of applying the m th treatment to the s th facility group at time 
period t  

sL   number of the s th facility group 

sijmP   

deterioration transition probability from condition state i to state j  when 

the m th treatment is applied to the s th facility group. sijmP  satisfies the 

constraint of  ( )1, , , ,sijm
j

P s i j m
∈

= ∈ ∈ ∈
I

S I M  

1siX  
proportion of the s th facility group in condition state i at the beginning of 
the first time period, which is known to the decision maker before the 
maintenance planning 

*X  
minimum requirement on the proportion of facilities in the first condition 
state 
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( )P t  condition state probability vector of a facility at time period t 

( )ip t  

probability that a facility stays in state i in time period t; i ∈I , larger value 

of i corresponds to worse condition state; 
1

( ) 1
n

i
i

p t
=

=  

D  transition probability matrix 

ijd  

probability that the facility will deteriorate from state i to state j  in one 

time period, if i j<  and ( ),i j ∈I ; probability that the facility will stay in the 

same state in one time period, if if i j=  and ( ),i j ∈I  

np  probability of occurrence of the nth scenario and 1n

n

p
∈

=
N

 

Variables 

simtX  proportion of the s th facility group in condition state i that receives the m
th treatment at time period t 

n
simtX  decision variable simtX  for scenario n 

sitX  proportion of the s th type facility in condition state i at time period t 

smtM  proportion of the s  facility group that receives the m th treatment  at time 
period t  

 

3.2 DETERIORATION MODELING 

The concept of infrastructure condition is developed to quantitatively relate the condition of a 
facility to its ability to serve its intended users. Infrastructure condition is often represented by 
discrete ratings or states. Using discrete ratings instead of continuous indicators simplifies the 
computational complexity of the maintenance decision-making process, as details are not 
necessary at this level of management. Infrastructure facility condition deteriorates due to a 
variety of factors such as environmental conditions, and certain unobserved causes. In this paper, 
the deterioration of a facility is assumed to follow a discrete, state-based model widely used in 
infrastructure deterioration modeling (Wang et al. 1994; Li et al. 1996; Abaza et al. 2004; Gao 
and Zhang 2007).   
 
The basic idea of the discrete, state-based model is introduced as follows. Facility condition at 
different years is represented by a condition state probability vector:   

1( ) [ ( ), ( )]T
IP t p t p t=   (3.1) 

  
The deterioration process of a facility can be expressed by the change of the elements of the 
condition state probability vectors ( )P t . A transition probability matrix D  can be used to 

simulate this change.  

11 12 1

22 20

0 0 1

I

I

d d d

d d
D

 
 
 =
 
  
 





  



 (3.2) 

  



  

25 

Because a facility cannot improve to a better condition state by itself, the elements ijd  is replaced 

by 0 for i j> . Furthermore, the value of 1 in the last row of D  corresponding to state I indicates 
that the condition cannot deteriorate further. From all the above, the future condition can be 
predicted as: 

( ) ( )1P t D P t+ = ×  (3.3) 
 
where, ( )1P t +  represents the condition state probability vector at time 1t + ; 

 

3.3 MAINTENANCE PLANNING MODEL WITH DETERMINISTIC BUDGETS 

Consider an infrastructure system as a set S  of facilities, e.g., pavements, bridges, rail, mass 
transit, and dams. Condition 

 { }1, 2,..., I=I  is defined as a set of state space with elements 

representing the facility condition in which 1 represents the best condition state and I  the worst. 
A set of basic maintenance treatments is defined as { }1, 2,..., M=M , where the M th 

maintenance treatment is set to be most effective and expensive.  The scheduling time horizon is 
represented by the discrete set of time periods { }1, 2,...,T=T . During each time period, the 

conditions of the facilities deteriorate due to usage, aging, and environment.  The effectiveness 
of maintenance treatment at time period t is reflected in the condition at time period  1t + .  
 
Using the discrete, state-based deterioration model, the infrastructure maintenance planning 
problem with deterministic budgets is formulated in Equations. (3.4)-(3.8). 

1 1
1 1 1 1 1 1

1 1
max

1

T S M S I M

s s mt i m s simT
t s m s i ms

s

L X P L X
L T = = = = = =

∈

 + +  
 

S

 (3.4) 

1 1
1

s.t. , ,
M

sim si
m

X X s i
=

= ∀ ∈ ∈ S I  (3.5) 

, 1
1 1 1

 , , , 2,...,
M M I

sjmt sijm sim t
m m i

X P X s j t T−
= = =

= ∀ ∈ ∈ =  S I  (3.6) 

1 1 1

,
S I M

smt simt s t
s i m

C X L B t
= = =

≤ ∀ ∈ T  (3.7) 

0 1, , , ,simtX s i m t≤ ≤ ∀ ∈ ∈ ∈ ∈S I M T  (3.8) 
  
The objective (3.4) of the planning problem is to maximize the proportion of all facilities in the 
best condition state over the planning horizon. The first term inside the parenthesis represents the 
proportion from time period 1 to time period T . The second term in the parenthesis represents 
the proportion at time period 1+T , because a facility's condition at time period 1+T  is fully 
determined by its condition and received maintenance treatments at time period T . Constraint 
(3.5) represents the initial condition of each facility group at the beginning of the planning 
horizon. Constraint (3.6) represents the deterioration process of the facilities between two 
consecutive time periods. Constraint (3.7) ensures that the annual expenditure of maintenance 
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activities does not exceed the budget. Once the decision variables simtX  of problem (3.4)–(3.8) 

are obtained, the condition of each facility group can be calculated as: 

1

, , ,
M

sit simt
m

X X s i t
=

= ∀ ∈ ∈ ∈ S I T  (3.9) 

 
The maintenance decision is then calculated as: 

1

, , ,
I

smt simt
i

M X s m t
=

= ∀ ∈ ∈ ∈ S M T (3.10) 

 

3.4 MAINTENANCE PLANNING MODEL UNDER BUDGET UNCERTAINTY 

In this research, the budget uncertainty in the infrastructure maintenance planning problem is 
modeled using the Stochastic Programming model. Stochastic Programming is a framework for 
modelling optimization problems that involve uncertainty. In deterministic optimization 
problems, models are formulated with known parameters. However, in practice, many problems 
have some unknown parameters. Stochastic Programming model takes advantage of the fact that 
probability distributions governing the data are known or can be estimated. The objective is to 
find some solution that is feasible for all the possible data scenarios and maximizes (or minimize) 
the expectation of some function of the decisions and the random variables.  
 
In a multi time period infrastructure maintenance planning problem, the budgets of time period 2 
to T  are unknown to decision makers at period 1. Therefore, to extend the deterministic 
formulation (3.4)-(3.8) to a stochastic setting, the budget tB  at time period t, 1, ,t T=   is 

replaced with a random variable tB . In this research, tB  is assumed to evolve as a discrete time 

stochastic process with a finite probability space represented in the form of a scenario tree (for 
example Figure 0-1).  
 
T  stages in the tree represent T  planning periods. The nodes at the t stage of the tree 
correspond to scenarios of possible values of tB . If tb  represents the number of realizations of 

tB , then there are 
1

T

t
t

b
=

∏  nodes at the ܶth stage of the tree.  

 
Furthermore, let { }: 1, ..., K=K  denote the set of all nodes, where 1k =  corresponds to the root 

node at 1=t  and ( )t k  denotes the time period corresponding to node k . Each node k  is 

connected to its parent node k+  at time period 1−t  by an arc. A set of child nodes is associated 

with each node k  with ( ) { }1,..., 1t k T∈ − . The node set ( )( )1,..., , ,k k k
++ +

 is defined as a path 

from the root to node k .  
 
A set { }1, 2,..., N=N  is defined as the scenarios with each element representing a path from the 

root to any nodes k  with ( )t k T= . A scenario represents one possible combination of values for 
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all uncertain budgets. The probability associated with a scenario is the probability of reaching the 
corresponding node at year T  from the root node. For each scenario, the associated probability 

is np  and 1n

n

p
∈

=
N

.  

 
To illustrate the concept of the scenario tree, a simple example is presented with a planning 
period of three years (Figure 3.1). The budget at the starting time period is already known to the 
decision maker. It is assumed that there are two possible values, $5 million and $7 million, for 
both the second and third year budgets. Therefore, four possible scenarios ( )4N =  may occur 

over the three decision periods. With the scenarios defined above, a probability of 
{ }0.25, 1, 2,3, 4np n= ∈  is assigned to each scenario. In an actual problem, the decision makers 

can assign any probability to each scenario based on their own judgement.  
 
As illustrated in Figure 0-1, the scenario tree divides into branches corresponding to different 
realizations of the budget random variable. For example, the budget at year 2 is $5 million for 
scenarios 1 and 2 and $7 million for scenarios 3 and 4. For scenarios 1 and 3, the budget at year 
3 is $5 million, while for scenarios 2 and 4, the budget at year 3 is $7 million.  
 

 

Figure 0-1 Scenario Tree 

  
If scenarios 21, nn  ( N∈21, nn ) have the same information state at time period ݐ (sharing the same 
node at t in the scenario tree), the two scenarios are indistinguishable at t. In general, scenarios 

21, nn  are indistinguishable at t if they are identical in realizations for all uncertain budgets up to 
time t. For example, in Figure 3-1, scenarios 1 and 2 are indistinguishable at year 2, as they have 
the same budget realization at that year. However, they are distinguishable at year 3, because 
their budgets at that year are different. Moreover, let ( )21, nnt  denote the latest time period at the 

end of which scenarios 1n  and 2n  are indistinguishable. For example, in Figure 0-1, ( ) 22,1 =t , 
scenarios 1 and 2 differ in terms of budget realization after year 2.  
 

Scenarios

Year 3

Year 2

Year 1 B1

B2=5

B3=5

1

B3=7

2

B2=7

B3=5

3

B3=7

4
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Using the notations discussed above, the infrastructure maintenance planning problem under 
budget uncertainty can be formulated as a multi-stage stochastic programming problem in 
Equations. (3.11)-(3.16).   
 
 

1 1
1 1 1 1 1 1 1

1 1
max

1

N T S M S I M
n n n

s s mt si m s simT
n t s m s i ms

s

p L X P L X
L T = = = = = = =

∈

  +  +   
  

S

 (3.11) 

1 1
1

s.t. , , ,
M

n
sim si

m

X X s i n
=

= ∀ ∈ ∈ ∈ S I N  (3.12) 

, 1
1 1 1

, , , 2,..., ,
M M I

n n
sjmt sijm sim t

m m i

X P X s j t T n−
= = =

= ∀ ∈ ∈ = ∈  S I N  (3.13) 

1 1 1 1

, , , ,
N S I M

n n
smt simt s t

n s i m

C X L B s j t n
= = = =

≤ ∀ ∈ ∈ ∈ ∈ S I T N  (3.14) 

0 1, , , , ,n
simtX s i m t n≤ ≤ ∀ ∈ ∈ ∈ ∈ ∈S I M T N  (3.15) 

( )1 2
1 2 1 2, , , , , , ,n n

simt simtX X s i m t n n n n= ∀ ∈ ∈ ∈ ∈ ∈ ∈S I M t N N  (3.16) 

  
Objective (3.11) maximizes the expected annual proportion of facilities in the best condition 
state over the probability space of random variable tB . Constraints (3.12)–(3.15) are the same as 

constraints (3.5)-(3.8) but for the nth scenario. Decisions for different scenarios are linked by 
nonanticipativity constraints (3.16). The nonanticipativity-constraint states that decision 
variables of scenario 1n  and 2n  are equal whenever 1n  and 2n  are indistinguishable. In 
stochastic programming, constraints enforcing such conditions are called nonanticipativity 
constraints, implying that the future cannot be anticipated. The nonanticipativity-constraint acts 
as a coupling constraint that connects different scenarios together and specifies how the 
information of budget is shared among scenarios. For example, in Figure 3-1, decision variables 
before year 3 should be the same for scenarios 1 and 2.  
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CHAPTER 4. SOLUTION PROCEDURE 

 
Multi-stage stochastic programming is one of the most difficult problems in mathematical 
programming. The basic approach to multistage stochastic programs is to approximate the 
stochastic process using a process of finite scenarios exhibiting a tree structure. The size of the 
problem grows quickly as the number of stages and number of scenarios increase, typically 
leading to very large-scale linear programming models.  
 
Existing computational methods for multistage stochastic programming problems include 
decomposition methods that exploit specific structures of the model to split it into manageable 
pieces and scenario reduction techniques that generate smaller scenario trees from an initial set 
of scenarios. Decomposition methods can be further classified into two groups: Primal 
decomposition methods that define subproblems according to time stages and dual methods that 
construct subproblems that correspond to scenarios.  
 
In this research, the author proposes use of the augmented Lagrangian decomposition method 
(Rosa and Ruszczynski 1996) and scenario reduction method (Heitsch and Romisch 2009). The 
major computational advantage of the augmented Lagrangian decomposition method is the 
possibility of solving the dual problem by the multiplier method. Another important advantage of 
the augmented Lagrangian decomposition method over the usual Lagrangian duality is its 
sufficiency for primal recovery when the dual solution is known. The advantage of the scenario 
reduction method is that it significantly simplifies the computational effort. The following 
sections introduce the basic principle of these two methods.  
 

4.1 AUGMENTED LAGRANGIAN DECOMPOSITION (ALD) 

Let 1 2, ,..., LX X X  be non-empty closed convex subsets, and let ,,...,2,1, Lifi =  be convex 

functions. Moreover, let iA  be matrices of dimension , 1, 2,..., ,im n i L× =  and let mb R∈ . 

Consider the following convex programming problem: 

( )
1

min
L

i i
i

f x
=
  (4.1) 

1

L

i i
i

A x b
=

=  (4.2) 

, 1,2,...,i ix X i L∈ =  (4.3) 
  
 
Problems (4.1)-(4.3) can be decomposed into L  smaller and simpler problems 

( ){ }min , 1,...,
i ix X i if x i L∈ =  if constraint (4.2) is relaxed. To use this special structure to solve the 

problem, the augmented Lagrangian function is defined for this problem as: 

( ) ( )
2

1 1 1

,
2

L L L

i i i i i i
i i i

f x b A x b A x
ρπ π

= = =

 Λ = + − + − 
 

  x  (4.4) 
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where ρ  is the penalty parameter and 0ρ > .  The dual problem is also defined as: 

( ) ( ){ }max inf ,m x XR
g

π
π π∈∈

= Λ x  (4.5) 

  
 
For every optimal solution π̂  of (4.5), a point x̂  is a solution of (4.1)–(4.3) only if  ˆ(Λ x ˆ, )π

( )ˆmin ,π∈= Λx X x . Therefore, the optimal solution of problems (4.1)–(4.3) is obtained by solving 

the dual problem (4.5) instead (Ruszczynski 1997). The dual problem is solved by iteratively 
using the method of multipliers (4.6)–(4.7) until a convergence is reached (Sun and Yuan 2006): 

( )argmin ,k kπ
∈

= Λ
x X

x x  (4.6) 

( )1 , 0,1,2,k k kb kπ π ρ+ = + − =Ax   (4.7) 

 
where k  is the iteration counter for the method of multipliers.  
 
Thus far, although the coupling constraint (4.2) is relaxed, solving (4.6) is still cumbersome, 
because the third term of (4.4) is inseparable. As a result, problem (4.6) cannot be split into 
smaller subproblems for , 1,2,..., .ix i L=  To overcome this difficulty, an iterative nonlinear 

Jacobi method to the minimization of (4.4) is applied (Ruszczynski 1997; Rosa and Ruszczynski 
1996). This method uses a certain approximation of the minimizer kx  in (4.6) and solves the 
following simplified functions for 1,2,...,i L= : 

( ) ( )
2

, ,
2

T
i i i i i i i i i j j

j i

x f x A x b A x A x
ρπ π

≠

Λ = − + − −x  (4.8) 

 
where ix  represents all the solutions jx  with j i≠ . The main goal of this approach is to replace 

(4.6) with L  smaller problems: 

( )min , , , 1, 2,...,
i i

k
i i i

x X
x i Lπ

∈
Λ =x  (4.9) 

 
and to iteratively update the parameter , 1, 2,...,i i L=x . In this sense, solving (4.9) is equivalent 

to solving (4.6) with respect to ix  while keeping all ,jx j i≠  fixed. In this way, (4.6) can be 

solved using the Jacobi method (Rosa and Ruszczynski 1996): 
 
Step 0: Set the iteration counter of the Jacobi method : 0r =  and determine the initial solution 
values ,0 1k k −=x x . 
 
Step 1: Set : 1r r= + . Solve (5.9) for 1,2,...,i L=  and obtain the solution ,k rx , where 

{ }, , , ,
1 2, ,...,k r k r k r k r

Lx x x=x . 

 
Step 2: If , , 1k r k r −=Ax Ax  then stop and set ,k k r=x x ; otherwise update ,k rx  by (5.10) and go to 
Step 1: 

( ), , 1 , , 1k r k r k r k rτ− −= + −x x x x
 

(4.10) 
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where τ  is a weighting factor.  
 

4.2 APPLICATION OF ALD TO STOCHASTIC PROGRAMMING 

Using the idea discussed in the last section, infrastructure maintenance planning problems under 
budget uncertainty (3.11)-(3.16) can be decomposed into N  subproblems ( N  scenarios), if the 
nonanticipativity constraint (3.16) is relaxed. Using the Figure 4-1 as an example, if the 
nonanticipativity constraint is relaxed, the scenario tree will be separated to individual branches 
(Figure 0-1).  
 

 

Figure 0-1 Scenario Tree after Decomposition 

 
Because of the special structure of the problem, the augmented Lagrangian decomposition 
method can be used. The augmented Lagrangian function Λ  is first defined as:  
 

( )

( )
( )

( )
( )

1 1
1 1 1 1 1 1 1

, ' , '
2, ' ' '

1 ' 1 1 1 1 1 1 ' 1 1 1 1 1

1 1
,

1

2

N T S M S I M
n n n

s s mt i m s simT
n t s m s i ms

s

n n n nN N S I M N N S I M
n n n n n n
stim stim stim stim stim

n n t s i m n n t s i m

x p L X P L X
L T

X X X X

π

ρπ

= = = = = = =
∈

= = = = = = = = = = = =

  Λ = +  +   

− − + −

  

     

S

t t

 (4.11) 

 
The subproblem of the nth scenario is expressed as: 

( )
( )

( )

1 1
1 1 1 1 1 1

, ' , '
2, '

1 ' 1 1 1 1 1 1 ' 1 1 1 1 1

'

1 1 1

1 1
max

1

2

2
2

T S M S I M
n n

s s s mt i m s simT
t s m s i ms

s

n n n nN N S I M N N S I M
n n n n
stim stim stim

n n t s i m n n t s i m

I M
n n
stim stim

s i m

p L X P L X
L T

X X

X X

π
ρ

ρ

= = = = = =
∈

= = = = = = = = = = = =

= = =

 + +  

− +

−

 

     



S

t t


( ), '

1 ' 1 1

n nN N S

n n t= = =
  

t

 (4.12) 

1 1
1

s.t.  , , ,
M

n
sim si

m

X X s i
=

= ∀ ∈ ∈ S I  (4.13) 

B1

B2=5

B3=5

Scenario 
1

B1

B2=7
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Scenario 
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B1

B2=5
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3

B1

B2=7

B3=7

Scenario 
4
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, 1
1 1 1

, , , 2,...,
M M I

n n
sjmt sijm sim t

m m i

X P X s j t T−
= = =

= ∀ ∈ ∈ =  S I  (4.14) 

1 1 1 1

, , ,
N S I M

n n
smt simt s t

n s i m

C X L B s i t
= = = =

≤ ∀ ∈ ∈ ∈ S I T  (4.15) 

0 1, , , ,n
simtX s i m t≤ ≤ ∀ ∈ ∈ ∈ ∈S I M T  (4.16) 

  
The problem (4.12)-(4.16) is minimized with respect to decision variables associated with the n
th scenario assuming that decision variables of other scenarios are temporarily fixed. As 
suggested by Rosa and Ruszczynski (1996), scenarios are numbered so that at the ith scenario, 
the 1i + th scenario has the largest last common stage with i among all scenarios ij > . The 
augmented Lagrangian decomposition algorithm is carried out in the order of 1 to N . By 
applying the method of multipliers and the Jacobi method, the infrastructure maintenance 
planning problem is solved. 
 

4.3 SCENARIO REDUCTION (SR) 

Scenario reduction consists in eliminating scenarios that are similar to other scenarios. In the 
beginning, a large number of scenarios exist. These scenarios normally result from a simulation 
where the distribution of the simulated random variable is known. The aim of the scenario 
reduction is that a reduced number of scenarios still represent the underlying distribution in an 
acceptable way.  
 
Assume that the original probability distribution P  is discrete and carried by finitely many 

scenarios iω ∈Ω  with weights 0, 1, ,ip i N> =  , and 
1

1
N

i
i

p
=

= , i.e., 
1

i

N

i
i

P p ωδ
=

= . Let 

{ }1, ,J N⊂   and consider the probability measure Q  having scenario jω  with probabilities jq , 

{ }1, , \j N J∈  , i.e., compared to P  the measure 
jj

j J

Q q ωδ
∉

=  is reduced by deleting all 

scenarios ,j j Jω ∈  and by assigning new probabilistic weights jq  to each scenario ,j j Jω ∉ .  

One of the algorithms of reducing scenarios is to delete one scenario at a time. Therefore, the 
optimal deletion problem is 

{ }
( )

1, ,
min min ,l l jl N j l

p c ω ω
∈ ≠

 (4.17) 

 
If the minimum is attained at { }* 1, ,l N∈  , i.e., the scenario 

*l
ω  is deleted, the optimal 

redistribution rule is l lq p=  for each ( ){ }* *,l l j l∉  and ( ) ( ) ** * lj l j lq p p= + , where 

( ) ( )
* ** arg min ,j l l jj l c ω ω≠∈ . The optimal deletion of a single scenario will be repeated 

recursively until a prescribed number k  of scenarios is deleted.  
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CHAPTER 5. CASE STUDY 

 
A numerical experiment applying the proposed methodology to an example problem of a road 
network is carried out in the case study. The characteristics of the test problem and some 
implementation details are introduced. The benefit of using the stochastic programming approach 
over a deterministic approach is discussed. The computational result is commented and the 
proposed algorithm is examined in terms of trade-offs between computational effectiveness and 
solution quality. Test runs were programmed in MATLAB and performed on a standard desktop 
computer with 1 GB of memory and a 3.4 GHz CPU. 
 

5.1 CASE STUDY DATA SET 

The road network in Dallas District is used for the case study with data taken from the Texas 
Department of Transportation (TxDOT) Pavement Management Information System (PMIS). 
The PMIS is an automated system for storing, retrieving, analyzing, and reporting pavement 
condition information. It can be used to retrieve and analyze pavement information to compare 
maintenance and rehabilitation treatment alternatives, monitor current pavement conditions, and 
estimate total pavement needs. The main characteristics of the Dallas District road network are 
presented as follows. 
 

5.1.1 Size of the Network 

In the PMIS database for the Dallas District, there are five different functional class highways: 
Business Road (BR), Farm to the Market (FM), Interstate Highway (IH), State Highway (SH) 
and US Highway (US). According to their similarities in terms of the deterioration pattern, the 
highways are grouped into three broader categories as presented in Table 5.1. 
 

Table 5.1 Road Network Length 

Highway Groups Length (Lane-Kilometers) 

Group I (IH, US and BR) 8299 
Group II (SH) 3104 
Group III (FM) 5045 

 

5.1.2 Planning Horizon 

The objective of the case study is to develop a five-year maintenance plan for the road network, 
where the maintenance treatments will be applied at the beginning of each year. 
 

5.1.3 Performance Indicator 

In this case study, the Condition Score (CS) in the PMIS database is used as the performance 
indicator. The TxDOT PMIS stores three scores that represent the general condition of a 
pavement (TxDOT 2000), The Distress Score (DS) reflects the amount of visible surface 
deterioration of a pavement, with a range from 1 (the most distress) to 100 (the least distress). 
The Ride Score (RS) is a measure of the pavement’s roughness, ranging from 0.1 (the roughest) 
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to 5.0 (the smoothest). The Condition Score represents the pavement’s overall condition in terms 
of both distress and ride quality ranging from 1 (the worst condition) to 100 (the best condition). 
The condition of a pavement is discretized into five different states according to its condition 
score (Table 5.2)  
 

Table 5.2 PMIS Condition Scores 

Condition Score Description 

90-100 Very Good 
70-89 Good 
50-69 Fair 
35-49 Poor 
1-34 Very Poor 
 
The initial condition of the road network in terms of the percentage in each condition state is 
shown in Table 5.3. The numbers in this table represent the percentage of the corresponding road 
type in a specific condition state. For example, 73 percent of Type I road pavements—which 
comprise the majority of the road network—are in “Very Good” condition.  
 

Table 5.3 Road Network Initial Condition (%) 
 

Condition State\Road Groups IH, US and BR SH FM 
Very Good  73 58 62 
Good  11 15 16 
Fair  7 10 10 
Poor  5 9 8 
Very Poor  4 8 4 

 
The goal of the road network’s five year maintenance plan is that 90 percent of the road group I 
should be in “Very Good” condition state, and 80 percent of road groups II and III should be in 
“Very Good” condition state as shown in Table 5.4. 
 

Table 5.4 Road Condition Requirements 

Condition State\Road  Groups I II III 

Very Good (100-80) 90% 80% 80% 
 

5.1.4 Transition Probability 

Generally, there are two ways that transition probability can be estimated. The first way is by 
simulation through pavement design equations (Gao and Zhang 2007), while the second way 
estimates the probability through historical data (Butt et al. 1987; Jiang et al. 1989; Wang et al. 
1994). In this case study, the transition probability for each of the road groups is calculated based 
on the historical data from the Dallas PMIS database. The results are shown in Table 5.5, Table 
5.6, Table 5.7. 
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Table 5.5 TPM for Road Group I 

Initial 
State\Next 
State 

Very Good Good Fair Poor Very Poor 

Very Good 0.85 0.10 0.03 0.01 0.00 
Good 0.00 0.57 0.28 0.12 0.04 
Fair 0.00 0.00 0.47 0.39 0.13 
Poor 0.00 0.00 0.00 0.56 0.44 
Very Poor 0.00 0.00 0.00 0.00 1.00 

 
Table 5.6 TPM for Road Group II 

Initial 
State\Next 
State 

Very Good Good Fair Poor 
Very 
Poor 

Very Good 0.74 0.16 0.07 0.03 0.01 
Good 0.00 0.35 0.37 0.21 0.07 
Fair 0.00 0.00 0.45 0.44 0.11 
Poor 0.00 0.00 0.00 0.55 0.45 
Very Poor 0.00 0.00 0.00 0.00 1.00 

 
Table 5.7 TPM for Road Group III 

Initial 
State\Next 
State 

Very Good Good Fair Poor 
Very 
Poor 

Very Good 0.77 0.14 0.06 0.03 0.01 
Good 0.00 0.36 0.39 0.19 0.06 
Fair 0.00 0.00 0.38 0.43 0.19 
Poor 0.00 0.00 0.00 0.41 0.59 
Very Poor 0.00 0.00 0.00 0.00 1.00 

 

5.1.5 Maintenance Effect 

Maintenance treatments could be at any level, from the least expensive in preventive 
maintenance to the most expensive in reconstruction. However, it is not necessary for 
programming at the network level to be as detailed as at the project level. Four maintenance 
treatments levels are used in this case study: Do Nothing, Preventive Maintenance, Light 
Rehabilitation and Heavy Rehabilitation. For a given section at any given year, four possible 
treatments can be performed. Preventive maintenance, including seal coat, micro-surfacing or 
thin overlay, is aimed at extending the life of bituminous surfaces by retarding the effects of 
weathering and aging before significant amounts of distress have occurred. Rehabilitation 
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involves heavier treatmetns intended to increase the structural capacity, restore ride and seal the 
base and subgrade layers. For demonstration purpose, the assumed maintenance treatments effect 
for a pavement section is given in Table 5.8. 
 

Table 5.8 Maintenance Treatments Effect 

M&R treatment 
Condition state before 
treatments 

Condition state after 
treatment 

Do Nothing 

Very Good Very Good 
Good Good 
Fair Fair 
Poor Poor 
Very Poor Very Poor 

Preventive 
Maintenance 

Very Good Very Good 
Good Very Good 
Fair Fair 
Poor Poor 
Very Poor Very Poor 

Light Rehabilitation 

Very Good Very Good 
Good Very Good 
Fair Very Good 
Poor Good 
Very Poor Fair 

Heavy 
Rehabilitation 

Very Good Very Good 
Good Very Good 
Fair Very Good 
Poor Very Good 
Very Poor Very Good 

 

5.1.6 Maintenance Cost (Agency Cost) 

The unit costs for all types of treatments are taken from the work of Wang et al. (2003) as listed 
in Table 5.9.  
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Table 5.9 Maintenance Treatment Costs 

Road Group Maintenance Treatment 
Maintenance treatment unit cost 
($1000/lane/km) 

I 

Do Nothing 0 
Preventive Maintenance 10 
Light Rehabilitation 100 
Heavy Rehabilitation 500 

II 

Do Nothing 0 
Preventive Maintenance 8 
Light Rehabilitation 80 
Heavy Rehabilitation 400 

III 

Do Nothing 0 
Preventive Maintenance 5 
Light Rehabilitation 20 
Heavy Rehabilitation 100 

 

5.2 SOLUTION OF ALD 

In this research, it is assumed that the budget at every year is unknown but will be allocated from 
$80 million, $100 million, and $120 million with equal probabilities. Therefore, there are a total 
of 243 scenarios for this problem. The characteristics of the original problem and the 
subproblems after decomposition are summarized in Table 5.10. Before decomposition, the 
stochastic programming problem has 287,955 constraints and 24,300 variables, which makes it 
impossible to be solved on a standard desktop computer. The subproblems require much less 
computational effort with each subproblem having only 75 constraints and 300 variables. As 
noted, by adopting the decomposition technique, the size of the problem is dramatically reduced.  
 

Table 5.10 Computational Characteristics 

 

Subproblem after applying 
augmented Lagrangian 
decomposition 

Original problem 

Number of 
constraints 

75 287,955 

Number of 
variables 

300 24,300 

 
 A stopping criterion 310ε −=  is used for both the method of multipliers and the Jacobi 
method. The value of ρ and τ  is set at 0.5. The initial values of the decision variable 0x  are 
assigned zeros. Figure 5-1 shows the relationship between the iteration of the method of 
multipliers and the iteration of the Jacobi method. As illustrated, the Jacobi method occurs with 
greatest frequency at the beginning of the algorithm, then the iteration of Jacobi steps decreases 
rapidly.  
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Figure 5-1 Number of Jacobi Steps in Each Outer Loop 

 
 Figure 5-2 shows the relationship between the multiplier iterations and the number of 
nonanticipativity constraints violated. As seen in this figure, the constraints violation drops 
quickly during the first four multiplier iterations; then it is subsequently followed by a slower 
convergence until the stopping criterion is reached. The optimal objective function value of the 
stochastic programming approach is obtained as 78.23. 
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Figure 5-2 Number of Violated Nonanticipativity Constraints 

 

5.3 DETERMINISTIC SOLUTION (EV) 

An alternative to the stochastic programming (SP) approach is to consider only the expected 
budget values, which is known as the expected value (EV) approach. This approach is to 
schedule the maintenance activities assuming that the budget will take their expected values 
during the planning horizon. The EV approach can be mathematically expressed as 

( )min ,
x

EV z x ξ=  (5.1) 

 
where x  represents the decision variables, z  represents the objective function and ξ  is the 
expected value of the random variable ξ . Using the example of Figure 0-1, the concept of the 
EV approach can be illustrated in Figure 5-3.  
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Figure 5-3 Scenario Tree of EV Approach 

 
The advantage of this approach is that it is computationally easy to solve. In this research, by 
solving the deterministic problem (3.4)-(3.8), the detailed maintenance plan is obtained as shown 
in Table 5.11. The numbers in the table are the percentage of whole road network that will 
receive the corresponding maintenance treatments.  
 

Table 5.11 Maintenance Plan of Deterministic Solution 

Year 
Do 
Nothing 

Preventive 
Maintenance 

Light 
Rehabilitation 

Heavy 
Rehabilitation 

1 0.257 0.670 0.073 0.000 
2 0.107 0.869 0.017 0.008 
3 0.100 0.893 0.000 0.007 
4 0.084 0.880 0.029 0.007 
5 0.142 0.815 0.038 0.005 

 
The objective function of the EV approach is obtained as 89.97, which is much better than the SP 
solution 78.23. This is no surprise, since the EV approach only considers one scenario while the 
SP considers all 243 scenarios. The EV result actually represents the upper bound of the SP 
problem. However, ignoring the random characteristics of future budget may lead to suboptimal 
result. The EV solution is infeasible (in terms of budget constraint satisfaction) to some of 
scenarios. As a result, some of the planned maintenance activities may have to be canceled and a 
new maintenance plan has to be made. In order to evaluate the benefit of using the SP method 

against the EV approach quantitatively, the EV solution ( )x ξ  is used to calculate the expected 

objective function value for all possible scenarios. The resulted quantity is called expected result 
of using the EV solution (EEV).  

( )( )( ),EEV E z xξ ξ ξ=  (5.2) 

  

B1

B2=6

B3=6
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EEV measures how ( )x ξ  performs, allowing subsequent-stages decisions to be chosen 

optimally. In other words, EEV represents the expected objective function value if decisions are 
made ignoring the budget uncertainty. By using (5.2), the EEV of the test problem can be 
calculated as 67.35. The difference between the EEV and the SP solution is called value of the 
stochastic solution (VSS), 
VSS EEV SP= −  

(5.3) 
  
A small VSS means that the approximation of the SP by the EV approach is applicable. For the 
test example, however, VSS is almost 15% of the value of SP, which confirms that there is an 
obvious benefit in using a stochastic model than a deterministic one.  
 
In order to identify the difference between SP and EV, Table 5.12 compares the maintenance 
plans of them at the first year. As can be seen in Table 5.12, more resources are allocated to 
preventive maintenance in the stochastic programming approach. Therefore, the stochastic 
solution alleviates the effect of possible funding shortages by allocating more resources to 
preventive maintenance treatments. The underlying strategy of the stochastic solution is to 
spread out current funding among more pavement sections given the existence of budget 
uncertainty in future years. Using this strategy, the expected condition of a road network can be 
optimized. In practice, the proposed stochastic programming problem must be solved every year 
when decision makers become aware of specific appropriations and budget constraints. The 
maintenance plan obtained for the first year can be used to schedule activities during the year 
under consideration.  

 

Table 5.12 Maintenance Plan Comparison of Year 1 between EV and SP 

Method Do Nothing 
Preventive 
Maintenance 

Light 
Rehabilitation 

Heavy 
Rehabilitation 

EV 0.257 0.670 0.073 0.000 

SP 0.170  0.780  0.050  0.000  

 

5.4 COMPUTATIONAL COMPARISON (ALD, EV AND SR) 

To demonstrate the effectiveness of the proposed decomposition algorithm, a computational 
comparison is carried out. Table 5.13 lists the computational characteristics of the augmented 
Lagrangian decomposition (ALD) method, scenario reduction (SR) method and the EV approach 
for problems (3.11)–(3.16). The scenario reduction method is another approach to solve the 
stochastic programming problem. It generates a scenario subset closest to the initial distribution 
in terms of a natural probability metric. In other words, only a portion of the original scenarios 
are selected in SR to reduce the size of the problem. As can be seen in Figure 5-4 and Figure 5-5, 
the size of the problem can be largely reduced after applying the scenario reduction method.  
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Figure 5-4 Scenario Tree before Reduction 

 

 

Figure 5-5 Scenario Tree after Reduction 

 
As shown in Table 5.13, the EV approach and the SR approach are much faster than the ALD 
method in terms of computational time. Because of the reduction of uncertainty, the objective 
function values of SR and EV are higher than the result of ALD. However, as shown in the 
fourth column of Table 5.13, by using the idea of (5.2), the ALD approach produces the best 
expected objective function value for all 243 scenarios. This is because the ALD approach takes 
all scenarios into consideration at the beginning of the planning horizon; and the solution of 
ALD consists of maintenance plan for every scenario. However, the solutions obtained from SR 
and EV considers only part of the scenarios. As a result, some of the planned maintenance 
activities may have to be re-planed in the future, which makes the solution suboptimal. It is up to 
the decision maker’s choice to make trade-offs of solution quality and computational effort.  
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Table 5.13 Computational Characteristics Comparison 

Methods 
Computational 
Time (seconds) 

Objective Function 
Value  

Expected Objective 
Function value 

ALD 240.1398 78.23 78.23 
SR(reduced to 10 
scenarios) 

7.6875 80.66 72.49 

EV 0.5938 89.97 67.35 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 SUMMARY  

The main objective of this study is to define a methodological framework for infrastructure asset 
management maintenance scheduling problem under budget uncertainty and to develop solution 
algorithms for solving the defined problem. A multistage linear stochastic programming model is 
developed and the effectiveness and efficiency of three different solution approaches are 
investigated. Finally, the developed model and solution algorithms are used to solve practical 
case.  
 

6.2 CONCLUSIONS 

Conclusions drawn from this study are as follows: 

1. Stochastic programming methods can be used to model the uncertainty of future 
maintenance budgets as random variables in infrastructure asset management resource 
allocation optimization problems. Stochastic programming is based on probability theory 
and mathematical programming. A Stochastic Programming problem, that is defined by 
chance constraint functions and a probabilistic objective function, can be translated to a 
deterministic optimization problem by defining a scenario tree. However, as the number 
of planning stages and number of scenarios at each stage increase, the size of the 
resulting deterministic problem increases quickly. Three different approaches (ALD, EV 
and SR) are investigated in this research. The ALD approach is able to produce the best 
results.  

2. A road network case is studied as part of this research. The following findings indicate 
that the proposed model and solution procedure is able to solve the maintenance 
scheduling problem efficiently and effectively. The benefit of using the stochastic 
programming approach over a deterministic approach is also discussed. Stochastic 
programming solutions, which take future budget uncertainty into consideration, tend to 
allocate more resource into preventive maintenance than deterministic solution that 
ignores the uncertainty information. The proposed methodology can help decision makers 
effectively obtain optimal maintenance planning under budget uncertainty.  

 

6.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

In the following, some areas are given with respect to opportunities for future research. 
 

6.3.1 Stochastic Integer Programming 

The current framework is based on stochastic linear programming, where the decision variables 
determine the percentage of infrastructure system receiving a certain type of maintenance 
treatment. As discussed in section 2.2.2, this formulation has its advantage that the solution is 
guaranteed to be global optimal. However, this approach simplifies the decision making process 
by giving maintenance plans for “groups” instead of individual facilities. Therefore, an agency 
which manages an infrastructure system has to further allocate resource from “groups” to 
specific facilities after running the linear programming model. In other words, the linear 
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programming approach may not give the best plan compared with Integer Programming 
formulation, where the decision variables directly specify the location, timing and treatment type. 
As discussed before, the disadvantage of the IP approach is that the size of the problem increase 
exponentially as the number of facilities, the number of planning stages and the number of 
maintenance treatments increase. It is interesting to search solution algorithms that will solve 
large-scale IP formulation for infrastructure maintenance scheduling problem and its application 
in the stochastic setting.           
 

6.3.2 Uncertainties other than Budget 

There are other uncertainties in the infrastructure management process. For example, 
infrastructure deterioration is a dynamic, complicated, and stochastic process affected by a 
variety of factors such as usage, environmental conditions, and structural capacities, as well as 
certain unobserved factors. Hence, the performance of an infrastructure facility can never be 
predicted with absolute certainty. Ignoring such uncertainties during the modeling process may 
compromise the validity of an optimal solution. It is also important to take those uncertainties 
into consideration when making maintenance resource allocation decisions.  
 

6.3.3 Different Ownership 

In the current framework, the developed model is suitable for government agencies like State 
DOTs. In recent years, public private partnership (PPP) is becoming an increasingly popular 
method of funding large infrastructure projects. These PPP projects involve financing for 
different stages of a project including the design, build, expansion, upgrade and operation. This 
use as a relatively new source of funding infrastructure projects has highlighted some of the 
challenges and issues when planning maintenance activities. Therefore, it is important that this 
new change being reflected in the maintenance planning model.  
 

6.3.4 Balance between different regions 

In this report, the developed model can help decision makers allocate funds to infrastructure 
facilities under management. However, for some agencies, another factor is important that the 
balance between different regions or districts have to be taken into consideration. For example, 
in Texas Department of Transportation, funds have to be distributed to 25 districts and the 
districts can further allocate it to specific projects. Therefore, it is important to incorporate this 
factor as additional constraints to the model, allowing it to make maintenance plans by 
considering different condition and demands among districts.  
 

6.3.5 Multiple objectives 

In the current methodology framework, only one objective is considered in the optimization 
problem formulation. Single-objective optimization is adequate if the decision maker is satisfied 
with optimizing only one objective. In practice, there may be more than one objective that need 
to be optimized in the infrastructure maintenance planning process. Different competing 
objectives may have significantly different impacts on the resulting solutions. For example, an 
agency may wish to find maintenance strategies that maximize system conditions while also 
minimizing the risk of safety failures. A trade-off compromise can be used to either optimize one 
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objective and include the competing objectives as constraints, or optimize the sum of the 
competing objectives. In future research works, these multi-objective issues should be addressed.  
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